Loading Web-Font TeX/Main/Regular
Logo

3.3 Applying SQP Algorithm

Parameter estimation is carried out in the Matlab environment by using the built-in quadratic programming solver, quadprog. The algorithm is described below: (Bonnans et al., 2006, 257)

  1. Set up initial value of \left( \boldsymbol{{\gamma}_{0}},\boldsymbol{{\lambda}_{0}} \right), and compute {{c}_{I}}\left( \boldsymbol{{\gamma}_{0}} \right), \nabla f{\left( \boldsymbol{{\gamma}_{0}} \right)}, and {{A}_{I}}\left( \boldsymbol{{\gamma}_{0}}\right). Set the iteration index k=0.
  2. Stop and report \left( \boldsymbol{{\gamma}_{k}},\boldsymbol{{\lambda }^{QP}} \right) as the optimal solution if the KKT conditions (3.2) are satisfied.
  3. Solve the QP problem (3.4) by computing the Hessian matrix of the Lagrangian L\left( \boldsymbol{{\gamma }_{k}},\boldsymbol{{\lambda }_{k}} \right) and derive d_{k} with Matlab function quadprog.
  4. Solve the Lagrange multiplier \boldsymbol{{\lambda }^{QP}} by the first equation in (3.3), \boldsymbol{{\lambda }^{QP}}={{\left( {\boldsymbol{{A}_{k}}}^{T} \right)}^{-1}}\left( -\nabla \boldsymbol{{f}_{k}}-\boldsymbol{{{L}_{k}}d} \right).
  5. Set the new solution of the k+1 iteration as \boldsymbol{{\gamma }_{k+1}}=\boldsymbol{{\gamma }_{k}} +\boldsymbol{{d}_{k}} and \boldsymbol{{\lambda }_{k+1}}=\boldsymbol{{\lambda }^{QP}}.
  6. Compute {{c}_{I}}\left( \boldsymbol{{\gamma}_{k+1}} \right), \nabla f{\left( \boldsymbol{{\gamma}_{k+1}} \right)}, and {{A}_{I}}\left( \boldsymbol{{\gamma}_{k+1}}\right). Go back to the step 2 and set k=k+1.

We can directly compute the gradient vector \nabla f{\left( \boldsymbol{\gamma} \right)} and the Lagrangian Hessian matrix L\left( \boldsymbol{{\gamma }_{k}},\boldsymbol{{\lambda }_{k}} \right). The initial value is set to the parameter estimates of the truncated regression model without boundary constraints by the Stata truncreg command.11 (Cong, 2000)

____________________

Footnote

11 Regarding numerical issues and technical model information, please consult with the supplementary materials.

Download [full paper] [supplementary materials] [all replication files] [technical note]